Max Phase Materials in 3D Printing

MAX materials and MXene materials are new two-dimensional materials that have attracted much attention recently, with excellent physical, chemical, and mechanical properties, and have shown broad application prospects in lots of fields. This is a detailed overview of the properties, applications, and development trends of MAX and MXene materials.

What is MAX material?

MAX phase material is actually a layered carbon nitride inorganic non-metallic material consisting of M, A, X elements on the periodic table, collectively called “MAX phase”. M represents transition metal elements, like titanium, zirconium, hafnium, etc., A represents the main group elements, like aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer consists of M, A, X, three of the components of the alternating composition arrangement, with hexagonal lattice structure. Because of their electrical conductivity of metal and strength, high-temperature resistance and corrosion resistance of structural ceramics, these are popular in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding and other fields.

Properties of MAX material

MAX material is a new kind of layered carbon nitride inorganic non-metallic material with the conductive and thermal conductive qualities of metal, consisting of three elements using the molecular formula of Mn 1AXn (n=1, 2 or 3), where M means the transition metal, A refers to the main-group elements, and X means the elements of C or N. The MXene material is a graphene-like structure obtained through the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MXenes material are novel two-dimensional nanomaterials made up of carbon, nitrogen, oxygen, and halogens.

Uses of MAX materials

(1) Structural materials: the excellent physical properties of MAX materials make sure they are have a wide range of applications in structural materials. For example, Ti3SiC2 is a kind of MAX material with good high-temperature performance and oxidation resistance, which could be used to manufacture high-temperature furnaces and aero-engine components.

(2) Functional materials: Besides structural materials, MAX materials are also used in functional materials. As an example, some MAX materials have good electromagnetic shielding properties and conductivity and can be used to manufacture electromagnetic shielding covers, coatings, etc. Furthermore, some MAX materials likewise have better photocatalytic properties, and electrochemical properties can be utilized in photocatalytic and electrochemical reactions.

(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which may be used in energy materials. For instance, K4(MP4)(P4) is one in the MAX materials with higher ionic conductivity and electrochemical activity, which bring a raw material to manufacture solid-state electrolyte materials and electrochemical energy storage devices.

What Exactly are MXene materials?

MXene materials are a new form of two-dimensional nanomaterials obtained by MAX phase treatment, just like the structure of graphene. The outer lining of MXene materials can communicate with more functional atoms and molecules, as well as a high specific surface area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation ways of MXene materials usually include the etching treatment of the MAX phase and the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties including electrical conductivity, magnetism and optics could be realized.

Properties of MXene materials

MXene materials are a new kind of two-dimensional transition metal carbide or nitride materials composed of metal and carbon or nitrogen elements. These materials have excellent physical properties, including high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., along with good chemical stability and the opportunity to maintain high strength and stability at high temperatures.

Applications of MXene materials

(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and are widely used in energy storage and conversion. As an example, MXene materials can be used electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. In addition, MXene materials can also be used as catalysts in fuel cells to enhance the activity and stability of the catalyst.

(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be used in electromagnetic protection. As an example, MXene materials can be used as electromagnetic shielding coatings, electromagnetic shielding cloth, as well as other applications in electronic products and personal protection, boosting the effectiveness and stability of electromagnetic protection.

(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be used in sensing and detection. As an example, MXene materials bring gas sensors in environmental monitoring, which could realize high sensitivity and selectivity detection of gases. Furthermore, MXene materials may also be used as biosensors in medical diagnostics as well as other fields.

Development trend of MAX and MXene Materials

As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Down the road, using the continuous progress of science and technology and the increasing demand for applications, the preparation technology, performance optimization, and application parts of MAX and MXene materials will be further expanded and improved. These aspects can become the focus of future research and development direction:

Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Down the road, new preparation technologies and methods may be further explored to realize a more efficient, energy-saving and eco-friendly preparation process.

Optimization of performance: The performance of MAX and MXene materials is definitely high, there is however still room for further optimization. In the future, the composition, structure, surface treatment as well as other elements of the content can be studied and improved comprehensive to improve the material’s performance and stability.

Application areas: MAX materials and MXene materials have already been popular in many fields, but there are still many potential application areas to get explored. Down the road, they could be further expanded, such as in artificial intelligence, biomedicine, environmental protection along with other fields.

In summary, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show an extensive application prospect in many fields. Using the continuous progress of technology and science and also the continuous improvement of application demand, the preparation technology, performance optimization and application parts of MAX and MXene materials will likely be further expanded and improved.

MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.